Direct observation of protein folding, aggregation, and a prion-like conformational conversion.

نویسندگان

  • Feng Ding
  • Joshua J LaRocque
  • Nikolay V Dokholyan
چکیده

Protein conformational transition from alpha-helices to beta-sheets precedes aggregation of proteins implicated in many diseases, including Alzheimer and prion diseases. Direct characterization of such transitions is often hindered by the complicated nature of the interaction network among amino acids. A recently engineered small protein-like peptide with a simple amino acid composition features a temperature-driven alpha-helix to beta-sheet conformational change. Here we studied the conformational transition of this peptide by molecular dynamics simulations. We observed a critical temperature, below which the peptide folds into an alpha-helical coiled-coil state and above which the peptide misfolds into beta-rich structures with a high propensity to aggregate. The structures adopted by this peptide during low temperature simulations have a backbone root mean square deviation less than 2 A from the crystal structure. At high temperatures, this peptide adopts an amyloid-like structure, which is mainly composed of coiled anti-parallel beta-sheets with the cross-beta-signature of amyloid fibrils. Most strikingly, we observed conformational conversions in which an alpha-helix is converted into a beta-strand by proximate stable beta-sheets with exposed hydrophobic surfaces and unsaturated hydrogen bonds. Our study suggested a possible generic molecular mechanism of the template-mediated aggregation process, originally proposed by Prusiner (Prusiner, S. B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13363-13383) to account for prion infectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions

Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...

متن کامل

Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.

A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombin...

متن کامل

Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein.

Prion disease is characterized by the alpha-->beta structural conversion of the cellular prion protein (PrP(C)) into the misfolded and aggregated "scrapie" (PrP(Sc)) isoform. It has been speculated that methionine (Met) oxidation in PrP(C) may have a special role in this process, but has not been detailed and assigned individually to the 9 Met residues of full-length, recombinant human PrP(C) [...

متن کامل

Folding of the yeast prion protein Ure2: kinetic evidence for folding and unfolding intermediates.

The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2...

متن کامل

Chaperone-dependent amyloid assembly protects cells from prion toxicity.

Protein conformational diseases are associated with the aberrant accumulation of amyloid protein aggregates, but whether amyloid formation is cytotoxic or protective is unclear. To address this issue, we investigated a normally benign amyloid formed by the yeast prion [RNQ(+)]. Surprisingly, modest overexpression of Rnq1 protein was deadly, but only when preexisting Rnq1 was in the [RNQ(+)] pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 48  شماره 

صفحات  -

تاریخ انتشار 2005